Ref No:

SRI KRISHNA INSTITUTE OF TECHNOLOGY, BANGALORE

Academic Year 2019-20

Program:	BE – MECHANICAL ENGINEERING
Semester :	5
Course Code:	17MEL57
Course Title:	FLUID MECHANICS & MACHINERY LAB
Credit / L-T-P:	2 / 1-0-2
Total Contact Hours:	36
Course Plan Author:	Naveen Kumar Pattar/Dinesh P

Academic Evaluation and Monitoring Cell

No. 29, Chimney hills, Hesaraghatta Road, Chikkabanavara BANGALORE-560090, KARNATAKA, INDIA Phone / Fax :+91-08023721315/23721477, Web: www.skit.org.in

INSTRUCTIONS TO TEACHERS

• Classroom / Lab activity shall be started after taking attendance.

17MEL57

- Attendance shall only be signed in the classroom by students.
- Three hours attendance should be given to each Lab.
- Use only Blue or Black Pen to fill the attendance.
- Attendance shall be updated on-line & status discussed in DUGC.
- No attendance should be added to late comers.
- Modification of any attendance, over writings, etc is strictly prohibited.
- Updated register is to be brought to every academic review meeting as per the COE.

Table of Contents

 17MEL57:Fluid Mechanics and Machinery Lab
 4

 17MEL57
 Copyright ©2017. cAAS. All rights reserved.

A. LABORATORY INFORMATION	4	
1. Laboratory Overview		4
2. Laboratory Content		4
Expt#		4
3. Laboratory Material		5
4. Laboratory Prerequisites:		5
5. Content for Placement, Profession, HE and GATE		6
B. Laboratory Instructions	6	
1. General Instructions		6
2. Laboratory Specific Instructions		6
C. OBE PARAMETERS	7	
1. Laboratory Outcomes		7
2. Laboratory Applications		
3. Mapping And Justification		
4. Articulation Matrix	1	0
5. Curricular Gap and Experiments	1	0
6. Experiments Beyond Syllabus		
D. COURSE ASSESSMENT 1		
1. Laboratory Coverage	1	11
2. Continuous Internal Assessment (CIA)	1	1
E. EXPERIMENTS	2	
Experiment 01 : Calculate co-efficient of friction through pipes	1	2
Calculate co-efficient of friction through pipes		
Experiment 02 : Determination of minor losses in flow through pipes		
Determination of minor losses in flow through pipes		
Experiment 03 : Application of momentum equation for determination of coefficient of impact		
of jets on flat and curved blades	1	5
Application of momentum equation for determination of coefficient of impact of jets on flat		
and curved blades	1	5
Experiment 04 : Calibration of flow measuring devices Orifice meter, Nozzle , Venturi meter ,		
V-notch.	1	6
Experiment 05 : Performance on hydraulic Turbines		-
Experiment 06 : Performance hydraulic Pumps	2	21
Performance hydraulic Pumps		
Experiment 07 : Performance test on a two stage Reciprocating Air compressor		
Experiment 8 : Performance test on an Air Blower	2	25
F. Content to Experiment Outcomes	27	
1. TLPA Parameters	2	27
2. Concepts and Outcomes:	2	28

Note : Remove "Table of Content" before including in CP Book Each Laboratory Plan shall be printed and made into a book with cover page Blooms Level in all sections match with A.2, only if you plan to teach / learn at higher levels

17MEL57:Fluid Mechanics and Machinery Lab

A. LABORATORY INFORMATION

1. Laboratory Overview

Degree:	BE	Program:	ME
Year / Semester :	3 / 5	Academic Year:	2019-20
Course Title:	Fluid mechanics and machinery lab	Course Code:	17MEL57
Credit / L-T-P:	2 / 1-0-2	SEE Duration:	180 Minutes
Total Contact Hours:	36 Hrs	SEE Marks:	60Marks
CIA Marks:	40	Assignment	
Lab. Plan Author:	Naveen Kumar Pattar/Dinesh P	Sign	Dt :18/8/2019
Checked By:	B M Krishne Gouda	Sign	Dt :

2. Laboratory Content

Expt #	Title of the Experiments	Lab Hours	Concept	Blooms Level
1	Lab layout, calibration of instruments and standards to be discussed	3	-	-
2	Determination of coefficient of friction of flow in a pipe.	3	Friction factors by various c/s pipes	L3 Apply
3	Determination of minor losses in flow through pipes	3	Losses through pipes	L3 Apply
	Application of momentum equation for determination of coefficient of impact of jets on flat and curved blades	3	Impact jet	L3 Apply
	Calibration of flow measuring devices Orifice meter, Nozzle, Venturi meter, V-notch.	3	Fluid flow	L3 Apply
	Performance on hydraulic Turbines a. Pelton wheel b. Francis Turbine c. Kaplan Turbines	3	Performance characteristics of turbine	L3 Apply
7	Performance hydraulic Pumps a. Single stage and Multi stage centrifugal pumps b. Reciprocating pump	3	Performance characteristics of pumps	L3 Apply
	Performance test on a two stage Reciprocating Air C compressor	3	Characteristic parameter for air compressor	L3 Apply
9	Performance test on an Air Blower	3	Characteristic parameter for air blower	L3 Apply

3. Laboratory Material

Books & other material as recommended by university (A, B) and additional resources used by Laboratory teacher (C).

Expt.	Details	Expt. in	Availability
		book	
	Text books		
2-5	K.L.Kumar."Engineering Fluid Mechanics" Experiments, Eurasia Publishing		In Library
	House, 1997		
6-9	Jagdish Lal, Hydraulic Machines, Metropolitan Bo		
	ok Co, Delhi, 1995		
В	Reference books		
6-9	George E. Totten Victor J. De Negri "Handbook of Hydraulic Fluid Technology,		In Library
	Second Edition, 2011		

С	Concept Videos or Simulation for Understanding		
1	uorepc-nitk.vlabs.ac.in		
2	https://www.youtube.com/watch? v=UDF448c6fOw		
3	https://www.tutorialspoint.com/videotutorials/index.htm		
4	https://skl.sh/practicalengineering3		
5	https://www.tutorialspoint.com/videotutorials/index.htm Lecture By: Er. Himansu		
6	- https://drive.google.com/open?id=1utMdeMujjiJwBuCD4r0fcflx0XAp4u9E		
7	https://www.tutorialspoint.com/videotutorials/index.htm		
8	https://amzn.to/2CWIed8		
D	Software Tools for Design	-	-
E	Recent Developments for Research	-	-
F	Others (Web, Video, Simulation, Notes etc.)	-	-
1	https://nptel.ac.in/courses/fluidmechanics.nit/		

4. Laboratory Prerequisites:

Refer to GL01. If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

Students must have learnt the following Courses / Topics with described Content . . .

Expt.	Lab. Code	Lab. Name	Topic / Description	Sem	Remarks	Blooms
						Level
1	17EME15	Elements Of	Mechanical Properties of turbines	1	Plan Gap Course	L2
		Mechanical	x			
		Engineering				
2	17MEL57	Fluid mechanics	Fluid properties, Fluid flows, variation	3	Plan Gap Course	L2
			in fluid flows, turbulent and laminar		-	
			flow.			

5. Content for Placement, Profession, HE and GATE

The content is not included in this course, but required to meet industry & profession requirements and help students for Placement, GATE, Higher Education, Entrepreneurship, etc. Identifying Area / Content requires experts consultation in the area.

Topics included are like, a. Advanced Topics, b. Recent Developments, c. Certificate Courses, d. Course Projects, e. New Software Tools, f. GATE Topics, g. NPTEL Videos, h. Swayam videos etc.

Expt.	Topic / Description	Area	Remarks	Blooms Level
6	Fluid Mechanics and Performance of turbines	GATE	NPTEL Videos	L3

B. Laboratory Instructions

1. General Instructions

SNo	Instructions	Remarks
1	Observation book and Lab record are compulsory.	
2	Students should report to the concerned lab as per the time table.	
3	After completion of the program, certification of the concerned staff in-charge in the	
	observation book is necessary.	
4	Student should bring a notebook of 100 pages and should enter the readings	
	observations into the notebook while performing the experiment.	

5	The record of observations along with the detailed experimental procedure of the experiment in the Immediate last session should be submitted and certified staff member in-charge.	
6	Should attempt all problems / assignments given in the list session wise.	
7	It is responsibility to create a separate directory to store all the programs, so that nobody else can read or copy.	
8	When the experiment is completed, should disconnect the setup made by them, and should return all the components/instruments taken for the purpose.	
9	Any damage of the equipment or burn-out components will be viewed seriously either by putting penalty or by dismissing the total group of students from the lab for the semester/year	
10	Completed lab assignments should be submitted in the form of a Lab Record in which you have to write the algorithm, program code along with comments and output for various inputs given	

2. Laboratory Specific Instructions

SNo	Specific Instructions	Remarks
1	Students must attend the lab classes with ID cards and in the prescribed uniform.	
2	Students must check if the components, instruments and machinery are	
	in working condition before setting up the experiment.	
3	Power supply to the experimental set up/ equipment/ machine must be	
	switched on only after the faculty checks and gives approval fording the	
	experiment. Students must start to the experiment. Students must start	
	doing the experiments only after getting permissions from the faculty.	
4	Students may contact the lab in charge immediately for any unexpected incident sand	
	emergency	
5	The apparatus used for the experiments must be cleaned and returned to the	
	technicians, safely without any damage	
6	Make sure, while leaving the lab after the stipulated time, that all the power	
	connections are switched off	

C. OBE PARAMETERS

1. Laboratory Outcomes

Expt.	Lab Code #	COs / Experiment Outcome	Teach.	Concept	Instr	Assessment	Blooms'
			Hours		Method	Method	Level
-	-	At the end of the experiment, the	-	-	-	-	-
		student should be able to					
1	17MEL57.1	Calculate co-efficient of friction through	3	Friction	Demonstr	Practical	L3
		pipes		factors by	ate	record and IA	Apply
				various c/s	chalk and	test	
				pipes	Bord		
2	17MEL57.2	Calculate different losses in pipes	3	Losses through	Demonstr	Practical	L3
				pipes	ate	record and IA	Apply
					chalk and	test	
					Bord		
3	17MEL57.3	Calculate impact jet on planes	3	Impact jet	Demonstr	Practical	L3
					ate	record and IA	Apply
					chalk and	test	
					Bord		
4	17MEL57.4	Calculate total discharge through flow	9	Fluid flow	Demonstr	Practical	L3
		measuring devises			ate	record and IA	Apply
					chalk and	test	
					Bord		
5	17MEL57.5	Calculate flow pattern through the	6	Performance	Demonstr	Practical	L3
		hydraulic turbine		characteristics	ate	record and IA	Apply
				of turbine	chalk and	test	

					Bord		
6	17MEL57.6	Illustrate flow pattern through the	6	Performance	Demonstr	Practical	L3
		hydraulic pumps		characteristics	ate	record and IA	Apply
				of pumps	chalk and	test	
					Bord		
7	17MEL57.7	Calculate the characteristic performance	3	Characteristic	Demonstr	Practical	L3
		for air-compressor		parameter for	ate	record and IA	Apply
				air compressor	chalk and	test	
					Bord		
8	17MEL57.8	Calculate the characteristic performance	3	Characteristic	Demonstr	Practical	L3
		for air-blower		parameter for	ate	record and IA	Apply
				air blower	chalk and	test	
					Bord		
-		Total	36	-	-	-	-

Note: Identify a max of 2 Concepts per unit. Write 1 CO per concept.

2. Laboratory Applications

Expt.	Application Area	CO	Level	
1	Design of flow pipes	CO1	L3	
2	² Power generating sector like turbine houses			
3	³ Bernoulli's Principle application areas			
4	4 Jet fowl, calculations. Impulse turbine blade design			
5	Discharge calculations in dams and channels	CO5	L3	
6	Power producing machines	CO6	L3	
7	Efficiency of turbines	CO7	L3	
8	Vehicle Air Blower testing	CO8	L3	
9	Hair drier	CO9	L3	

Note: Write 1 or 2 applications per CO.

3. Mapping And Justification

CO – PO Mapping with mapping Level along with justification for each CO-PO pair.

To attain competency required (as defined in POs) in a specified area and the knowledge & ability required to accomplish it.

1								
Expt.	Map	ping	Mapping	Justification for each CO-PO pair	Lev			
			Level		el			
-	CO	PO	-	'Area': 'Competency' and 'Knowledge' for specified 'Accomplishment'	-			
1	CO1	PO1	L2	'Engineering Knowledge:'Acquisition of Engineering_Knowledge is required to				
				understand the different performance of flow in friction through pipes to accomplish	L			
				solutions to complex engineering_problems in Mechanical Engineering.				
1	CO1	PO2	L3	'Problem Analysis': Analyzing problems require knowledge of / understanding flow	L3			
				a friction to accomplish solutions to complex engineering problems in				
				Mechanical engineering.				
1	CO1	PO9	L2	Individual work': Coefficient of friction through flow in a pipe function can be f				
				effectively as an individual.				
2	CO2	PO1	L2	Engineering Knowledge:'Acquisition of Engineering_Knowledge is required to	L3			
				understand the different losses in the flow through pipes to accomplish solutions to				
				complex engineering problems in Mechanical Engineering.				
2	CO2	PO2	L3	'Problem Analysis': Analyzing problems require knowledge of / understanding	L3			
				different major and minor losses in pipes to accomplish solutions to complex				
				engineering problems in Mechanical engineering.				
2	CO2	PO9	L2	'Individual work':Different losses in flow through pipe in a pipe function can be	L3			
				find effectively as an individual.				
3	CO3	PO1	L3	'Engineering Knowledge:'Acquisition of Engineering_Knowledge is required to	L3			

				understand the coefficient of jet on plate to accomplish solutions to complex engineering_problems in Mechanical Engineering.
3	CO3	PO2	L3	⁽ Problem Analysis': Analyzing problems require knowledge of understanding L3 coefficient of discharge in a jet on plate to accomplish solutions to complex engineering problems in Mechanical engineering.
3	CO3	PO9	L2	'Individual work':coefficient of discharge in a jet on plate in a pipe function can be L3 find effectively as an individual.
4	CO4	PO1	L2	⁶ Engineering Knowledge: Acquisition of Engineering_Knowledge is required to L3 understand the coefficient of discharge through flow measuring devices to accomplish solutions to complex engineering_problems in Mechanical Engineering.
4	CO4	PO2	L3,L6,L4	⁽ Problem Analysis ⁽): Analyzing problems require knowledge of understanding L3 coefficient of discharge in an venturi, orifice meters through to accomplish solutions to complex engineering problems in Mechanical engineering.
4	CO4	PO9	L2	'Individual work':coefficient of discharge in venturi and orifice in a pipe function L3 can be find effectively as an individual.
5	CO5	PO1	L2	^c Engineering Knowledge: Acquisition of Engineering_Knowledge is required to L3 understand the flow patterns in the different hydraulic turbines to accomplish solutions to complex engineering_problems in Mechanical Engineering.
5	CO5	PO2	L3	'Problem Analysis': Analyzing problems require knowledge of understanding L3 performance characteristics of different hydraulic turbines to accomplish solutions to complex engineering problems in Mechanical engineering.
5	CO5	PO9	L2	'Team work':Performance characteristics of hydraulic turbine can be find L3 effectively as a team.
6	CO6	PO1	L2	^c Engineering Knowledge: Acquisition of Engineering_Knowledge is required to L3 understand the flow patterns in the different hydraulic pumps to accomplish solutions to complex engineering_problems in Mechanical Engineering.
6	CO6	PO2	L3	⁽ Problem Analysis': Analyzing problems require knowledge of understanding L3 performance characteristics of different hydraulic pumps to accomplish solutions to complex engineering problems in Mechanical engineering.
6	CO6	PO9	L2	'Team work':Performance characteristics of hydraulic pumps can be find L3 effectively as a team.
7	CO7	PO1	L3	^c Engineering Knowledge: Acquisition of Engineering_Knowledge is required to L3 understand the Performance of an air compressor to accomplish solutions to complex engineering_problems in Mechanical Engineering.
7	CO7	PO2	L3	'Problem Analysis': Analyzing problems require knowledge of understanding L3 performance characteristics of an air compressor to accomplish solutions to complex engineering problems in Mechanical engineering.
7	CO7	PO9	-	'Team work':Performance characteristics of air compressor can be find effectively L3 as a team.
8	CO8	PO1	L2	^c Engineering Knowledge: Acquisition of Engineering_Knowledge is required to L3 understand the Performance of an air blower to accomplish solutions to complex engineering_problems in Mechanical Engineering.
8	CO8	PO2	L3	^{(Problem Analysis': Analyzing problems require knowledge of understanding L3 performance characteristics of an air blower to accomplish solutions to complex engineering problems in Mechanical engineering.}
8	CO8	PO9	L3	'Team work':Performance characteristics of air blower can be find effectively as a L3 team.

4. Articulation Matrix

CO - PO Mapping with mapping level for each CO-PO pair, with course average attainment.

-	-	Experiment Outcomes	Program Outcomes	-
Expt.	CO.#	At the end of the experiment	PO PS PS PS	Lev

1 1	l		4				~	-	-			10		10			~~	
		student should be able to	1	2	3	4	5	6	1	8	9	10	11	12	01	02	03	
1	17MEL57.1	Calculate co-efficient of friction	2	3	-	-	-	-	-	-	2	-	-	-	-	-	-	L3
		through pipes																
2	17MEL57.2	Calculate different losses in pipes	2	3	-	-	I	-	-	-	2	-	-	-	-	-	I	L3
3	17MEL57.3	Calculate impact jet on planes	2	2	-	-	-	-	-	-	2	-	-	-	-	-	-	L3
4	17MEL57.4	Calculate total discharge through	2	3	-	-	I	-	-	-	2	-	-	-	-	-	I	L3
		flow measuring devises																
5	17MEL57.5	Calculate flow pattern through the	2	3	-	-	-	-	-	-	2	-	-	-	-	-	-	L3
		hydraulic turbine																
6	17MEL57.6	Illustrate flow pattern through the	2	2	-	-	-	-	-	-	2	-	-	-	-	-	-	L3
		hydraulic pumps																
7	17MEL57.7	Calculate the characteristic	2	2	-	-	-	-	-	-	2	-	-	-	-	-	-	L3
		performance for air-compressor																
8	17MEL57.8	Calculate the characteristic	2	2	-	-	-	-	-	-	2	-	-	-	-	-	-	L3
		performance for air-blower																
-	17MEL57	Average attainment (1, 2, or 3)	2	2.5							2							-
-	PO, PSO	1. Engineering Knowledge; 2. Problem	Ar	ialy	sis;	3.D	esig	n /	De	velo	рте	ent d	of S	olut	tions	s; 4.	Con	ıduct
		Investigations of Complex Problems; 5. Modern Tool Usage; 6. The Engineer and Society;																
		7.Environment and Sustainability;	8. <i>Et</i>	thics	; 9	.Ind	livid	ual	an	d 1	<i>eam</i>	woi	rk;	10.	Con	เทน	nica	tion;
		1. Project Management and Finance; 12. Life-long Learning; S1. Software Engineering; S2. Data																
		Base Management; S3.Web Design				-												

5. Curricular Gap and Experiments

Topics & contents not covered (from A.4), but essential for the course to address POs and PSOs.

Expt	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1	Flow Measuring Devices	Seminar	15/10/2019	Self	PO2
	concept				
2	Air Blower Working	NPTEL Videos	4/11/2019	-	PO2
	Principle				

Note: Write Gap topics from A.4 and add others also.

6. Experiments Beyond Syllabus

Topics & contents required (from A.5) not addressed, but help students for Placement, GATE, Higher Education, Entrepreneurship, etc.

Expt	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1	Analysis of orifice and	NPTEL Videos	15/10/2019	-	PO2
	venturi meter				

D. COURSE ASSESSMENT

1. Laboratory Coverage

Assessment of learning outcomes for Internal and end semester evaluation. Distinct assignment for each student. 1 Assignment per chapter per student. 1 seminar per test per student.

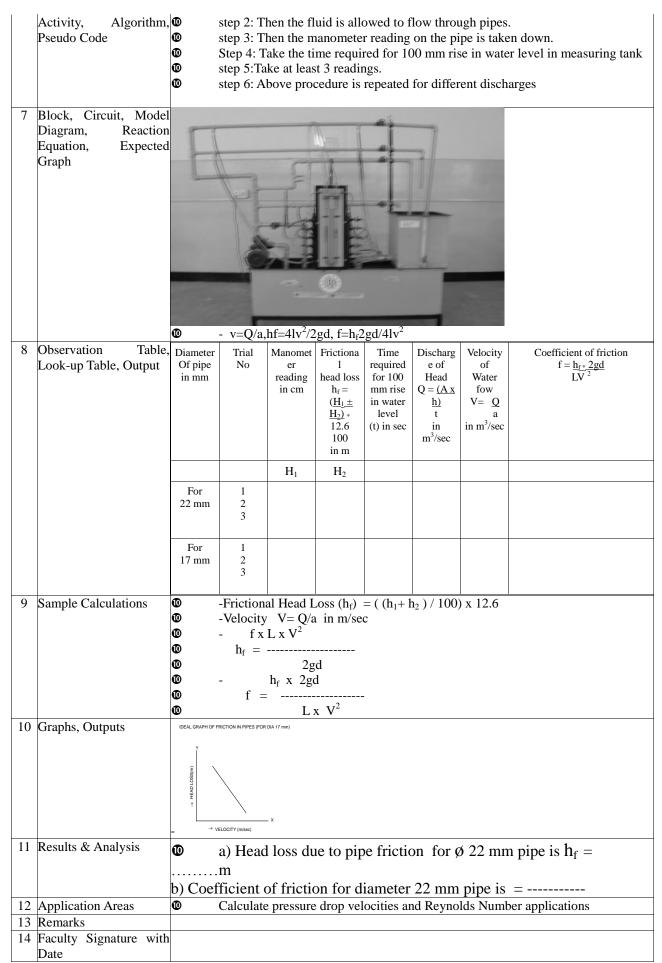
Unit	Title	Teachin		N	o. of q	uestion	in Exa	m		CO	Levels
		g Hours	CIA-1	CIA-2	CIA-3	Asg-1	Asg-2	Asg-3	SEE		
1	Lab layout, calibration of instruments	03	1	-	-	-	-	-	1	CO1	L2
	and standard										
	s to be discussed										
2	Determination of coefficient of friction	03	1	-	-	-	-	-	1	CO2	L3
	of flow in										
	a pipe.										
3	Determination of minor losses in flow	03	1	-	-	-	-	-	1	CO3	L3
	through pipes										
4	Application of momentum equation for	03	1	-	-	-	-	-	1	CO4	L3
	determination of coefficient of impact										
	of jets on flat and curved blades										

5	Calibration of flow measuring devices	06	-	2	-	-	-	-	2	CO5	L3
	Orifice meter, Nozzle,										
	Venturi meter, V-notch.										
6	Performance on hydraulic Turbines	06	-	2	-	-	-	-	2	CO6	L3
	a. Pelton wheel										
	b. Francis Turbine										
	c. Kaplan Turbines										
7	Performance hydraulic Pumps	06	-	-	2	-	-	-	2	CO7	L3
	a. Single stage and Multi stage										
	centrifugal pumps										
	b. Reciprocating pump										
8	Performance test on a two stage	03	-	-	1	-	-	-	1	CO8	L3
	Reciprocating Air C										
	compressor										
9	Performance test on an Air Blower	03	-	-	1	-	-	-	1	CO9	L3
-	Total	36	4	4	4	-	-	-	12		L3

2. Continuous Internal Assessment (CIA)

Assessment of learning outcomes for Internal exams. Blooms Level in last column shall match with A.2.

Evaluation	Weightage in Marks	СО	Levels
CIA Exam – 1	40	CO1, CO2, CO3, CO4	L3
CIA Exam – 2	40	CO5, CO6	L3
CIA Exam – 3	40	CO7, CO8,CO9	L3
	-	-	-
Other Activities - define -	-	-	-
Slip test			
Final CIA Marks	40	C01-CO9	L3

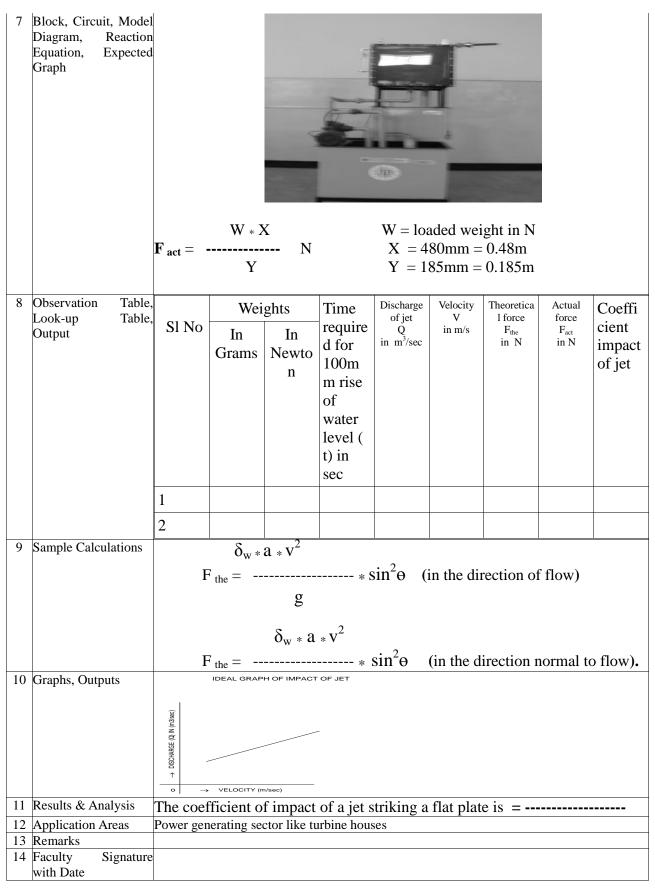

SNo	Description	Marks
1	Observation and Weekly Laboratory Activities	10 Marks
2	Record Writing / Viva	15 Marks for each Expt
3	Internal Exam Assessment	15 Marks
4	Internal Assessment	40 Marks
5	SEE	60 Marks
-	Total	100 Marks

E. EXPERIMENTS

Experiment 01 : Calculate co-efficient of friction through pipes

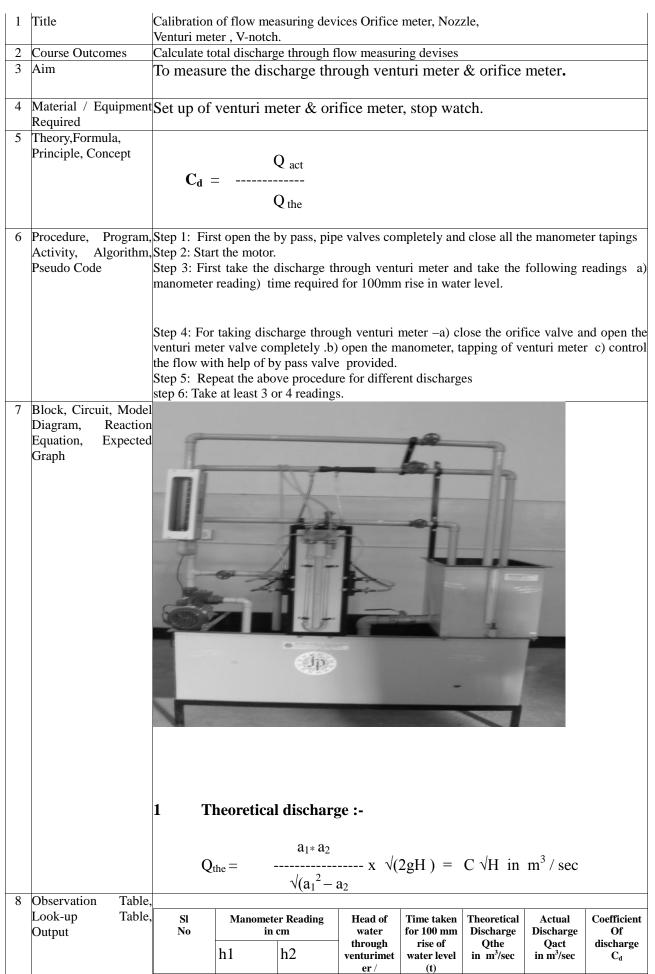
-	Experiment No.:	1	Marks	15	Date Planned		Date Conducted	
1	Title	Ca	lculate co-e	fficient of fi	riction throu	ıgh pipes		
2	Course Outcomes	Cal	culate co-effici	ent of friction	through pipes			
3	Aim	Det	ermine coeffic	ient of friction	for pipes and h	head loss in pip	be friction	
4	Material / Equipment	Pipe	e friction appa	ratus , stop wa	tch			
	Required							
5	Theory, Formula,	To f	ind co-efficier	t of friction,f=	hf*2gd/alv ² , F	riction factors	by various c/s	pipes
	Principle, Concept							
6	Procedure, Program,	0	step 1: Bo	efore starting f	low through pi	pes the initial 1	manometer read	ding is taken.

_


Experiment 02 : Determination of minor losses in flow through pipes

-	Experiment No.:	1	Marks	15		ate		Dat		
1	Title	Determir	nation of n	ninor losses		nned hrough ni	ines	Condu	cted	
2	Course Outcomes			osses in pip		in ough p	ipes			
	Aim			nt losses du		fitting				
	Material / Equipment Required	Set of pip	e fitting ap	paratus, sto	p watch					
5		Losses th	rough pipe	s, $H_x = (h1 + l)$	n2/1000)*	12.6, h _{em} =	$(v1-v2)^2/2$	g		
h6	Procedure, Program, Activity, Algorithm, Pseudo Code	9 s 9 s 9 s 9 s	step 2: The step 3: The step 4:Take step 5:Take	ore starting n the fluid i n the manon the time re at least 3 re ve procedur	s allowed neter reac quired for eadings.	to flow th ling on the 100 mm	rough pipe e pipe is tal rise in wate	es. ken down. er level in	-	
	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph	L								
		Hea	d loss (El	bow)						
		1	(ne =).25 v ² 2g						
		Неа	ud loss (C	Contractio	on)					
		1	1c =	$\frac{0.5 \text{ v}^2}{2\text{g}}$						
			Head loss	(Enlarge	ement)					
			(h _{en} =	$\frac{(v_1 - v_2)^2}{2g}$						
	Observation Table,				D 100		D 1 - 1			
	Look-up Table, Output	Type of fitting	Trail Nos	r reading in cm	Differentia l Head of Manomete r	Time required for 100 mm rise of water level	Discharge Q = A x h t in m ³ /sec	Area of correspond ing Pipe 'a' in m ²	Velocity of Flow V in m/sec	Frictional head loss h _f in m
	AT 57	L	1				ight @2017_c			

					$H=(\underline{h_1\pm h_2})_*$	(t) in sec				
					12.6 100 in m					
				h_1	h ₂					
		BEND	1 2 3							
		ELBOW	1 2 3							
		CONTRA CTION	1 2 3							
		ENLARG EMENT	1 2 3						aı	a ₂
9	Sample Calculations	1) H	leat lost	due to F	riction in	m of wa	ıter			
			н	$-(\mathbf{H}_{i\perp})$	$H_2/100)$	v126				
		2) V	elocity V			A12.0				
	Graphs, Outputs									
11	Results & Analysis	1. H	lead loss	due to f	riction in	bend h	1 _{b =}			
		2. H	lead loss	due to f	riction in	elbow ł	$h_{e} = \dots$			
		3. H	lead loss	due to f	riction in	sudden	contract	ion $h_{c=1}$		
								nent $h_{e} =$		
			1000	uue to 1		suuden	ennargen	itent ne =		
12	Application Areas	Design of	flow pipes							
13	Remarks		• •							
14	Faculty Signature									
	with Date									

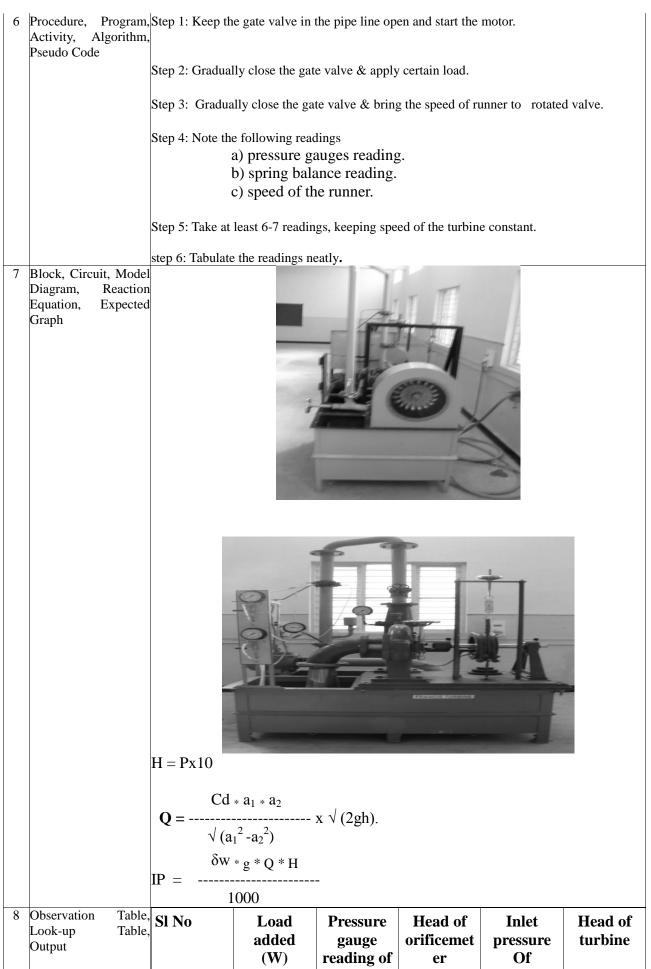

Experiment 03 :Application of momentum equation for determination of coefficient of impact of jets on flat and curved blades

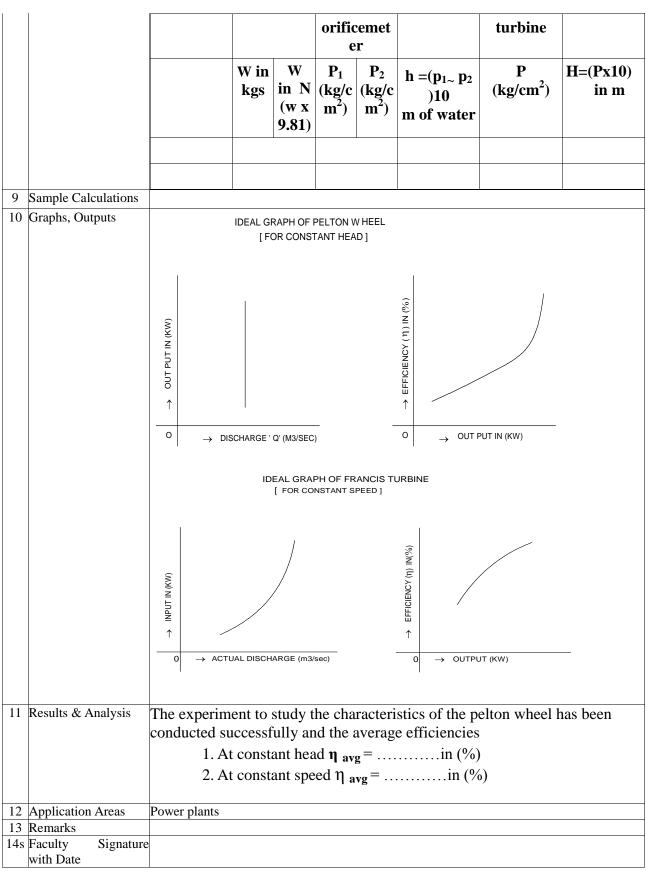
-	Experiment No.:	1	Marks	15	Da	ate		Date				
	_				Plan	nned		Conducted				
1	Title	Appli	cation of mor	nentum equa	tion fo	r determir	nation of co	oefficient of i	mpact of jets			
		on fla	flat and curved blades									
2	Course Outcomes	Calcu	ulate impact jet on planes									
3	Aim	Dete	ermination of force developed by impact of jet on vanes									
4	Material / Equipment	Impa	act of jet apparatus, Standard dead weights, Stop watch									
	Required											
		Coef	ficient impa	ct of jet	K =	F act						
	Principle, Concept					F the						
6	Procedure, Program,	Step 1	: First balance	the lever med	chanism	to zero.						
	Activity, Algorithm,	Step 2	: Again balanc	e the lever me	echanisn	n by loadin	ng weights c	on the other sid	le			
	Pseudo Code		mechanism.									
			Step 3: Take the time required for 100mm raise in water level of measuring tank									
			: Above proce			fferent dise	charges.					
			: Thus calcula									
		step 6	tep 6: Above procedure is same for inclined plate.									

Experiment 04 : Calibration of flow measuring devices Orifice meter, Nozzle ,Venturi meter , V-notch.

-	Experiment No.:	1	Marks	15	Date	Date	
					Planned	Conducted	

Copyright ©2017. cAAS. All rights reserved.

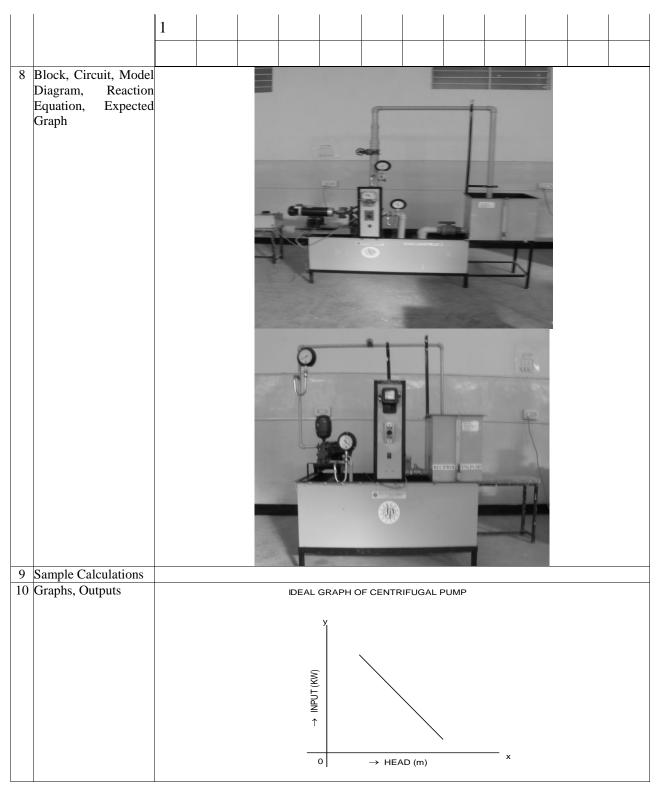

					orifice meter H= <u>h₁+h₂ x</u> 12.6 100 in m	in sec			
		1							
	Sample Calculations								
10	Graphs, Outputs	0 → HEAD (H) in m	IDEAL GRAPH	OF VENTURIMET	→ HEAD (H) in m	FFICIENT DISCHAR	RGE (Cd)		
	Results & Analysis	of dis	ven venturi scharge is fo	ound to be	e C _d (avg			age coeffic	vient
		Bernoulli'	s Principle ap	oplication ar	reas				
	Remarks								
	Faculty Signature with Date								

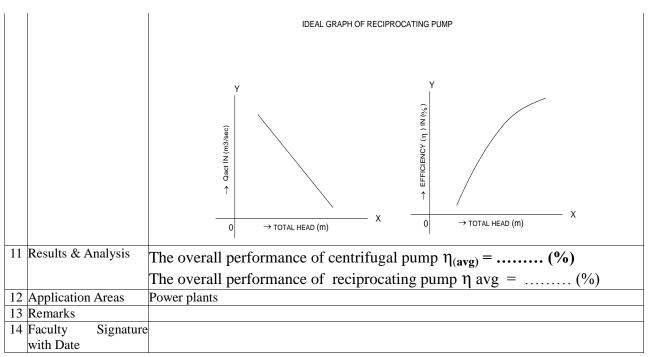

Experiment 05 : Performance on hydraulic Turbines

a. Pelton wheel **b.** Francis Turbine

c. Kaplan Turbines

-	Experiment No.:	1	Marks	15	Date		Date					
					Planned		Conducted					
1	Title	Perform	nance on hyd	raulic Turbine	S							
2	Course Outcomes	Calcula	ate flow patte	rn through the	hydraulic turbine							
	Calculate flow pattern		-	_	-							
	through the hydraulic											
	turbine											
3	Aim	Perfor	rmance test	ing of pelto	n wheel turbine	,						
				ing of Franc								
4	Material / Equipment			0	on wheel turbin	e Standa	rd weights '	Tachometer				
	Required	LAPCI	incital set			c ,Standa	itu wergints,	racifoniciei.				
5	Theory, Formula,											
	Principle, Concept			Out put po	war							
	1 / 1											
			η =		x 100							
				Input powe	r							
				2.π.N	. T * 9.81							
			0	/P =		KW						
				60 *	1000							
				00	1000							
17ME	21.57				Convria		AS. All rights reso	muad				





Experiment 06 : Performance hydraulic Pumps

a. Single stage and Multi stage centrifugal pumpsb. Reciprocating pump

-	Experiment No.:	1	Marl	ks	15]	Date Planned	L			Date Iducted		
1	Title	Perfor	mance l	hydraul	ic Pum	1		I					
2	Course Outcomes	illustra	te flow p	pattern t	hrough	the hydr	raulic pu	imps					
3	Aim	*To d *	etermin	ne the	perforr	nance	of sing	gle stag	ge cent	rifugal	pump	•	
4	Material / Equipment Required	Single	e stage	centri	fugal p	ump so	etup, s	top wa	atch , '	Tacho	meter.		
5	Theory, Formula Principle, Concept	4)	Effici	ency (⁴		=	Out put Input p		er - x 100) in (9	6)		
6	Procedure, Program Activity, Algorithm Pseudo Code	Step 2: Step 3: a) b) c) d) Step 4:	Start the: Note do Vacu Press Time	e motor own the um ga sure ga e requin e requin e positio	followin uge rea uge rea red for red for on of gat	ng readi ading. ading. 10 flas 100 m te valve	sh of en um of w in deliv	vater le ery pip	evel in e.	measu	uring ta	nk	
7	Observation Table Look-up Table Output	SI	Suc he	ction ead Hs)	Deli he	very ad I _d)	Tota l	Tim e	Tim e requ	Disc harg e	Inpu t pow	Out put pow	Effic ienc y
			mm of Hg	,	Kg/c m ²		H –(ired for1 00m	(Q) in m ³ /s ec	er (IP) in KW	er (OP) in KW	η in (%)

Experiment 07 : Performance test on a two stage Reciprocating Air compressor

-	Experiment No.:	1	Marks	15	Date Planned		Date Conducted						
1	Title	Perfoi compi		a two stage Re	eciprocating Ai	r C	Conducted						
2	Course Outcomes	Calcu	late the charac	teristic perform	nance for air-co	ompressor							
3	Aim		determine the performance test of single stage Reciprocating pump										
4	Material / Equipment Required	Expe	erimental setup for two stage air compressor, Stop watch.										
5	Theory, Formula, Principle, Concept		metric effici	ency $\eta_v = \frac{1}{2}$	Qact_ x 100 Qt								
6	Procedure, Program, Activity, Algorithm, Pseudo Code	9) Tab Step 2 Step 3 Step 4 Step 5 Step Step	2: Close shutof 2: Fill manome 4:Start the moto 5:Once reaches 6 Note down 7 Note down	eadings and cal f valve. ter with water. or and observe a 1kg/Sq. cm, a n the reading n the time reading	re direction of culate Isothern	rotation of cor nal efficiency. e pressure gaug opening for the eter. '' flash of the	ge. e same pressu e energy me						

	Block, Circuit, Mode Diagram, Reactio Equation, Expecte Graph	n d										
	Observation Table Look-up Table Output		Manom eter head of water Hw = $\underline{H_1 \sim H_2}$ 1000 in m	$\begin{array}{l} Manom\\ eter\\ head of\\ air\\ Ha =\\ \underline{H_w \ x \ \rho_w}\\ \rho_a\\ {}_{in \ m} \end{array}$	Air mass flow rate at NTP (V ₁) in m3/min	Isother mal Horse power Iso Hp in KW	Input horse power IHP in KW	Isother mal efficien cy ηιso in (%)	Theoret ical volume swept by compre ssor Qthe in m ³ /sec	Actual volume swept by compre ssor Qact in m ³ /sec	Free air delivere d by the compre ssor FAD in m ³ /s	Volume tric Efficien cy ηvol = <u>Qact</u> Qthe in (%)
	Sample Calculations Graphs, Outputs											
		→ Qact IN (m3/sec) A	→ T(X	-	ING PUMF Y (¹) IN (³) (⁹) (¹) IN (³) (¹) (¹) IN (¹) IN (³) (¹) IN (¹) IN (³) (¹) IN (¹) IN (³) (¹) IN (¹) IN (¹) IN (¹) IN (¹) (¹) IN (¹) IN		L HEAD (m)	— X
11	Results & Analysis	The er	oroll re-	rforme	nooof	rocina	- antin -		nova	_	(0/	<u> </u>
	Application Areas		erall pe			recipro	ocating	pump	il avg	=	(%)
	Remarks	veniere		ier testill	6							
14	Faculty Signatur with Date	re										

Experiment 8 : Performance test on an Air Blower

-	Experiment No.:	1	Marks	15	Date Planned	Date Conducted	
1	Title	Perfor	mance test on	an Air Blower		 	

2	Course Outcomes	Calculate the characteristic performance for air-blower To study the performance test of
-		centrifugal air blower of different inlet positions
3	Aim	To study the performance test of a centrifugal air blower of different inlet positions
	Material / Equipment Require	Air blower test rig, stop watch.
	Theory, Formula, Principle, Concept Power	
6	Procedure, Program, Activity, Algorithm, Pseudo Code	Step 1: Connected the input power for console to 3hp AC supply with neutral and earth step 2: Keep all the switches/controls off/zero step 3: Switch on the mains and observe the light indications are ON beneath the console Step 4:Switch on the console mains ON Step 5:Switch on the instrumentation step 6:Keep the inlet valve open fully step 7:Switch on the starter so that the motor speed builds up to the constant rpm step 8: Null balance the torque arm using hand wheel step 9:take down the readings namely, blower speed ,flow, head, energy meter reading casing pressure distribution as per the table of readings step 10:Repeat the experiment for different types of impeller and for different gate opening step 11:After the readings are taken, switch off motor and electrical mains.
	Block, Circuit, Model Diagram, Reaction Equation, Expected Graph	Input = $\underline{n \times 3600 \times \eta_{motor}}$ in KW
8	Observation Table, Look-up Table, Output	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
		com com in com in com in com in com in com in com temp

9	Sample Calculations	$\eta = \frac{O/P \text{ Power}}{I/P \text{ Power}} \times 100 \text{ in (\%)}$
10	Graphs, Outputs	IDEAL GRAPH OF AIR BLOWER [HALF GATE OPENING]
11		The performance test of air blower has been conducted successfully & its efficiency is found to be $\eta_{b} = \dots \dots \dots \dots \dots (\%)$
12	Application Areas	Hair drier
13	Remarks	
14	Faculty Signature with Date	

F. Content to Experiment Outcomes

1. TLPA Parameters

	<u>Table 1: TLPA – Example Course</u>								
Expt-	Course Content or Syllabus	Content	Blooms'	Final	Identified	Instructio	Assessment		
#	(Split module content into 2 parts which have	Teaching	Learning	Bloo	Action	n	Methods to		
	similar concepts)	Hours	Levels for	ms'	Verbs for	Methods	Measure		
			Content	Level	Learning	for	Learning		
						Learning			
Α	В	С	D	E	F	G	Н		
1	Lab layout, calibration of instruments and	3	L2	L2	Conductio	Demonstr	Viva &		
	standards to be discussed		(Understa	(Unde	n	ate	presentation		
			nd)	rstand					
)					
2	Determination of coefficient of friction of flow in	3	L3	L3	Conductio	Demonstr	Viva &		
	a pipe.		(Apply)	(Appl	n	ate	presentation		
				y)					
3	Determination of minor losses in flow through	3	L3	L3	Conductio	Demonstr	Viva &		
	pipes		(Apply)	(Appl	n	ate	presentation		
				y)					
4	Application of momentum equation for	3	L3	L3	Conductio	Demonstr	Viva &		
	determination of coefficient of impact of jets on		(Apply)	(Appl	n	ate	presentation		
	flat and curved blades			y)					
5	Calibration of flow measuring devices Orifice	6	L3	L3	Conductio	Demonstr	Viva &		
	meter, Nozzle, Venturi meter, V-notch.		(Apply)	(Appl	n	ate	presentation		
				y)					
6	Performance on hydraulic Turbines	6	L3	L3	Conductio	Demonstr	Viva &		

	a. Pelton wheel		(Apply)	(Appl	n	ate	presentation
	b. Francis Turbine			y)			
	c. Kaplan Turbines						
7	Performance hydraulic Pumps	6	L3	L3	Conductio	Demonstr	Viva &
	a. Single stage and Multi stage centrifugal pumps		(Apply)	(Appl	n	ate	presentation
	b. Reciprocating pump			y)			
8	Performance test on a two stage Reciprocating Air	3	L3	L3	Conductio	Demonstr	Viva &
	С		(Apply)	(Appl	n	ate	presentation
	compressor			y)			
9	Performance test on an Air Blower	3	L3	L3	Conductio	Demonstr	Viva &
			(Apply)	(Appl	n	ate	presentation
				y)			

2. Concepts and Outcomes:

	Table 2: Concept to Outcome – Example Course						
Expt	Learning or	Identified	Final Concept	Concept Justification	CO Components	Course Outcome	
- #	Outcome from	Concepts		(What all Learning	(1.Action Verb,		
	study of the	from		Happened from the	2.Knowledge,		
	Content or	Content		study of Content /	3.Condition /	Student Should be	
	Syllabus			Syllabus. A short word	Methodology,	able to	
				for learning or	4.Benchmark)		
				outcome)			
Α	Ι	J	K	L	М	N	
	Determination	friction			Applying	Calculate co-efficient	
	of coefficient	through	friction through			of friction through	
	of friction of	pipes	pipes	discharge of flow	Conduction	pipes	
	flow in a pipe.			measuring devices.			
	Determination	losses in			Applying	Calculate different	
	of minor	pipes	in pipes	flow through pipes		losses in pipes	
	losses in flow			Applying	Conduction		
	through pipes						
				Conduction			
	Application of	impact jet	1 5		Applying	Calculate impact jet on	
	momentum	on planes	different	coefficient of impact		planes	
	equation for		profiles	5	Conduction		
	determination			curved blades			
	of coefficient						
	of impact of						
	jets on flat						
	and curved						
	blades					~	
	Calibration of	discharge	Total discharge		Applying	Calculate total	
	flow	through		discharge through flow	a	discharge through flow	
	measuring	flow	measuring	measuring devices	Conduction	measuring devices	
	devices	measuring	devises				
	Orifice meter,	devises					
	Nozzle,						
	Venturi meter						
F	, V-notch.	<u>д</u> .	£1	To Determine (1)	A	Calandata flammati	
	Performance	flow	flow pattern		Applying	Calculate flow pattern	
	on hydraulic	pattern	through the	energy flow pattern		through the hydraulic	
	Turbines	through the	different	through the hydraulic	Conduction	turbine	

	a. Pelton wheel b. Francis Turbine c. Kaplan Turbines	hydraulic turbine	hydraulic turbine	turbines		
6	Performance hydraulic Pumps a. Single stage and Multi stage centrifugal pumps b. Reciprocating pump	flow pattern through the hydraulic pumps	flow pattern through the different hydraulic pumps	To Determine the energy flow pattern through the hydraulic pumps	Applying Conduction	Illustrate flow pattern through the hydraulic pumps
7	Performance test on a two stage Reciprocating Air C compressor	performanc e of air- compressor	performance	Performance test for air compressor	Applying Conduction	Calculate the characteristic performance for air- compressor
8	Performance test on an Air Blower	performanc e for air- blower	characteristic performance for air-blower	Performance test for air blower	Applying Conduction	Calculate the characteristic performance for air- blower